TSTP Solution File: SYN731^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYN731^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n187.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:38:52 EDT 2014

% Result   : Unknown 0.93s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SYN731^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n187.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:32:26 CDT 2014
% % CPUTime: 0.93 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x20f7878>, <kernel.DependentProduct object at 0x20f7488>) of role type named cP
% Using role type
% Declaring cP:(fofType->(fofType->(fofType->Prop)))
% FOF formula ((ex fofType) (fun (W:fofType)=> ((forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((cP W) X) Y))))->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) W)))))) of role conjecture named cX2150
% Conjecture to prove = ((ex fofType) (fun (W:fofType)=> ((forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((cP W) X) Y))))->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) W)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['((ex fofType) (fun (W:fofType)=> ((forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((cP W) X) Y))))->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) W))))))']
% Parameter fofType:Type.
% Parameter cP:(fofType->(fofType->(fofType->Prop))).
% Trying to prove ((ex fofType) (fun (W:fofType)=> ((forall (X:fofType), ((ex fofType) (fun (Y:fofType)=> (((cP W) X) Y))))->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) W))))))
% Found x1:(((cP x) X) x01)
% Instantiate: x02:=x:fofType;X:=x01:fofType;x:=X:fofType
% Found x1 as proof of (((cP x02) x02) x)
% Found (ex_intro010 x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found ((ex_intro01 x) x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (fun (x1:(((cP x) X) x01))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1)) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found x1:(((cP x) X) x02)
% Instantiate: x:=X:fofType;x00:=x:fofType;X:=x02:fofType
% Found (fun (x1:(((cP x) X) x02))=> x1) as proof of (((cP x00) x00) x)
% Found x10:(((cP x) X0) x03)
% Instantiate: x:=X0:fofType;X0:=x03:fofType;x04:=x:fofType
% Found x10 as proof of (((cP x04) x04) x)
% Found (ex_intro010 x10) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found ((ex_intro01 x) x10) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x10) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (fun (x10:(((cP x) X0) x03))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x10)) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found x11:(((cP x) X1) x05)
% Instantiate: x:=X1:fofType;X1:=x05:fofType;x06:=x:fofType
% Found x11 as proof of (((cP x06) x06) x)
% Found (ex_intro010 x11) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found ((ex_intro01 x) x11) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x11) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (fun (x11:(((cP x) X1) x05))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x11)) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found x1:(((cP x) X) x01)
% Instantiate: x:=X:fofType;x08:=x:fofType;X:=x01:fofType
% Found x1 as proof of (((cP x08) x08) x)
% Found (ex_intro010 x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found ((ex_intro01 x) x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (fun (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1)) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (fun (x07:fofType) (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1)) as proof of ((((cP x) X2) x07)->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x))))
% Found (fun (x07:fofType) (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1)) as proof of (forall (x0:fofType), ((((cP x) X2) x0)->((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))))
% Found (ex_ind30 (fun (x07:fofType) (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1))) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found ((ex_ind3 ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))) (fun (x07:fofType) (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1))) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% Found (((fun (P:Prop) (x2:(forall (x0:fofType), ((((cP x) X2) x0)->P)))=> (((((ex_ind fofType) (fun (Y:fofType)=> (((cP x) X2) Y))) P) x2) x06)) ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))) (fun (x07:fofType) (x12:(((cP x) X2) x07))=> (((ex_intro0 (fun (Z:fofType)=> (((cP Z) Z) x))) x) x1))) as proof of ((ex fofType) (fun (Z:fofType)=> (((cP Z) Z) x)))
% % SZS status GaveUp for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------